Roll No: $\square$
BTECH
(SEM III) THEORY EXAMINATION 2021-22 ELECTRICAL MEASUREMENTS \& INSTRUMENTATION

Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

# SECTION A 

1. 

| Q no. | $\mathbf{2} \mathbf{x 1 0 =} \mathbf{1 0}$ |  |  |
| :--- | :--- | :--- | :--- |
| a. | Diffempt all questions in brief. <br> with suitable example. | Marks | CO |
| b. | A voltage has true value of 1.50 V. An analog indicating instrument with scale <br> range of 0-2.50 V show a voltage of 1.46 V. What are the value of absolute error <br> and correction? Express the error as fraction of true value. | 2 | 1 |
| c. | Enlist the errors found in Wheatstone bridge. | 2 | 1 |
| d. | Justify the need of modified Schottky bridge. | 2 | 2 |
| e. | Define Nominal ratio and Transformation ratio for CT and PT. | 2 | 3 |
| f. | Explain the term "Burden of Instrument Transformers" | 2 | 3 |
| g. | Draw the Lissajous pattern for frequency ratio 3:2 | 2 | 4 |
| h. | Write principal of operation of digital frequency meter. | 2 | 4 |
| i. | Differentiate active and passive type of transducers with suitable example. | 2 | 5 |
| j. | Write principle of operation of Thermocouple. | 2 | 5 |

## SECTION B

2. Attempt any three of the following:
$3 \times 10=30$

| Q no. | Question | Marks | CO |
| :---: | :---: | :---: | :---: |
| a. | Define the limiting Error. <br> The resistance value for three registers are specified as $R_{1}=100 \Omega \pm 5 \% R_{2}=$ $75 \Omega \pm 5 \%$ and $R_{3}=50 \Omega+5 \%$ Determine the value of limiting error in ohms and in percentage for 010 total equivalent resistance, if they are connected in (i) Series and (ii) parallel connection respectively. | 10 | 1 |
| b. | Describe the working $t$, Aay's bridge for measurement of inductance. Derive the equations for balandend draw the phasor diagram. <br> A Hay's bridge is 'onfigured as follows, Arm $A B$ : A choke coil having a resistance $\mathrm{R}_{1}$ and inducta ${ }^{2}$, Arm BC a non inductive resistance $\mathrm{R}_{3}$, Arm $C D$ : a mica condenser $\mathrm{C}_{4}$ in series with a non-inductive resistance $\mathrm{R}_{4}$, $\operatorname{Arm} D A$ : a non inductive resistance $\mathrm{R}_{2}$. A supply of 300 V and 500 Hz is given between terminals $A$ and $C$ and detector is connected between nodes $B$ and $D$. The balance is obtain under the following condition. <br> $\mathrm{R}_{2}=2410 \Omega, \mathrm{R}_{3}=750 \Omega, \mathrm{R}_{4}=64.5 \Omega$ and $\mathrm{C}_{4}=0.35 \mu \mathrm{~F}$ and a series resistance of capacitor $=0.4 \Omega$. <br> Determine the inductance $L_{1}$ and resistance $\mathrm{R}_{1}$ of unknown choke coil. | 10 | 2 |
| c. | The current transformer with 5 primary turns has a secondary burden consisting of a resistance of $0.16 \Omega$ and an inductive reactance of $0.12 \Omega$. When the primary current is 200 A , the magnetising current is 1.5 A and the iron loss current is 0.4 A . Find the number of secondary turns needed to make the current ratio 100.1 and also find the phase angle. | 10 | 3 |
| d. | Classify different types of digital voltmeters. Explain Integrated type of digital voltmeters with the help of suitable diagrams. | 10 | 4 |
| e. | Describe the principle of operation, construction, working of piezoelectric transducers. Derive the expression for output voltage. <br> A piezoelectric crystal has a thickness of 2.5 mm and voltage sensitivity 0.05 $\mathrm{Vm} / \mathrm{N}$. Determine the output voltage when it is subjected to a pressure of $1.6 \times 10^{6}$ $\mathrm{N} / \mathrm{m}^{2}$. | 10 | 5 |

Roll No: $\square$
BTECH
(SEM III) THEORY EXAMINATION 2021-22

## ELECTRICAL MEASUREMENTS \& INSTRUMENTATION

## SECTION C

3. Attempt any one part of the following:
$1 \times 10=10$

| Q no. | Question | Marks | CO |
| :--- | :--- | :--- | :--- |
| a. | Illustrate the construction and operation of moving iron type of instruments. Also <br> derive the expression of deflecting torque. Enlist the advantages, disadvantages of <br> these instruments. | 10 | 1 |
| b. | Derive and illustrate the condition for balance with suitable circuit diagram for <br> Kelvin's Double bridge. | 10 | 1 |

4. Attempt any one part of the following:
$1 \times 10=10$

| Q no. | Question | Marks | CO |
| :--- | :--- | :--- | :--- |
| a. | Derive balance equation of Maxwell's Inductance-Capacitance Bridge along with <br> its phasor diagram. Also find the storage factor for this bridge. Mention advantages <br> and disadvantages of this bridge. | 10 | 2 |
| b. | Derive the equation of balance for Schering bridge. Also draw its phasor diagram. <br> Discuss how dissipation factor of a capacitor can be measured by it. | 10 | 2 |

5. Attempt any one part of the following:
$1 \times 10=10$

| Q no. | Question | Marks | CO |
| :--- | :--- | :--- | :--- |
| a. | Draw the equivalent circuit and phasor diagram of a current transformer. Derive <br> the expression for ratio and phase angle. | 10 | 3 |
| b. | A current transformer of turns ratio $1: 199$ is rated as $1000 / 5$ A, 25 VA. The core <br> loss and magnetizing component of the primary current are 4A and 7A under rated <br> conditions. Determine the phase angle and ratio errors for the rated burden and <br> rated secondary current of 0.8 p.f. lagging and 0.8 p.f. leading. Neglect the <br> resistance and leakage resistancefof secondary winding. | 10 | 3 |

6. Attempt any one part ${ }^{\text {o }}$ the following:
$1 \times 10=10$

| Q no. | Question | Marks | CO |
| :--- | :--- | :--- | :--- |
| a. | Define spectry analyzer. Classify different types of spectrum analyzers and <br> explain basic spectrum analyzer with neat block diagram. Also give the <br> applications of wave analyzers. | 10 | 4 |
| b. | Describe the construction and working of general purpose CRO using block <br> diagram and explain its components in detail. | 10 | 4 |

7. Attempt any one part of the following:
$1 \times 10=10$

| Q no. | Question | Marks | CO |
| :--- | :--- | :--- | :--- |
| a. | Discuss factors for selecting a transducer. Explain pressure capacitance transducer <br> with a neat diagram. State advantages and disadvantages of a capacitive transducer. | 10 | 5 |
| b. | Explain the principle, construction and working of strain gauge transducer and <br> formulate the expression for gauge factor in terms of Poisson's ratio. | 10 | 5 |
| A resistance strain gauge with a gauge factor 3 is fastened to a steel member <br> subjected to a stress of $100 \mathrm{~N} / \mathrm{mm}^{2}$ The modulus of elasticity of steel is <br> approximately $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ Estimate the value of percentage change in the <br> resistance. |  |  |  |

